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A quantum fluid density functional approach is adopted to study the time evolution of various reactivity
parameters such as electronegativity, hardness, polarizability, and entropy associated with a collision process
between a proton and a Be atom in its ground and excited electronic states. This collision process may be
considered to be a model mimicking the actual chemical reaction between a Be atom and a proton to give
rise to a BeH+ molecule. A favorable dynamical process involving a ground or an excited state is characterized
by maximum hardness, minimum polarizability, and maximum entropy values.

I. Introduction

Electronegativity1 (ø) and hardness2 (η) are two important
indices of chemical reactivity. Since inception these two quan-
tities have been extensively used in understanding molecular
structure, properties, reactivity, bonding, interactions, and
dynamics. The concept of electronegativity was first introduced
by Pauling3 as the power of an atom in a molecule to attract
electrons to itself, while that of hardness was given by Pearson4

in the context of the hard-soft acid-base (HSAB) principle
which states that “hard acids will prefer to react with hard bases
and soft acids with soft bases to form a kinetically and thermo-
dynamically stable molecule”. Quantitative definitions of these
properties are provided within the purview of density functional
theory5 (DFT). Electronegativity6 and hardness7 are respectively
defined as the following first- and second-order derivatives,

and

for an N-electron system with energyE and chemical and
external potentialsµ and V(r ), respectively. Equivalently,
hardness can be expressed as8

where f (r ) is the Fukui function9 and the hardness kernel is
given by8

in terms of the Hohenberg-Kohn-Sham universal functional10

F [F] of DFT. There are some useful principles of molecular
electronic structure based on these concepts. Electronegativity
difference is the major driving force behind the electron-transfer
processes in chemical reactions. Electrons are transferred from
a species of lower electronegativity to one with higher elec-
tronegativity until the electronegativity values of both the species

become equal. In a molecule, all the constituent atoms have
the same electronegativity value which is equal to the geometric
mean of the isolated atoms’ electronegativities.11 An important
hardness-related principle is the maximum hardness principle12

which states that “there seems to be a rule of nature that
molecules arrange themselves so as to be as hard as possible”.
Theoretical justifications of all three principles, viz. electrone-
gativity equalization,13 HSAB,7,14 and maximum hardness15

principles have been provided within DFT.
The wave function of a many-particle system is completely

characterized byN and V(r ). While ø and η measure the
response of the system whenN changes at fixedV(r ), polariz-
ability (R) plays the same role for varyingV(r ) at constant N.
Owing to an inverse relationship16 betweenR andη, a minimum
polarizability principle in agreement with the maximum hardness
principle has been first conjectured and then explicitly demon-
strated in a time-dependent situation.17 It may be stated as17

“the natural direction of evolution of any system is towards a
state of minimum polarizability”. Validity of this principle in
case of chemical reactions has also been shown.18 Another
important principle is that of maximum entropy19 which states
that “the most probable distribution is associated with the maxi-
mum value of the Shannon entropy of the information theory”.
Dynamic generalizations of these principles have been studied

and the possibility of a chemical reaction dynamics in terms of
the time evolution of these quantities has been explored in our
laboratory.17,20 To our knowledge, no attempt has been made
so far in extending these studies to excited states especially in
the time-dependent situation. In the present paper we employ
quantum fluid density functional theory21 to study a collision
process between an ion and an atom in its ground and excited
electronic states and to monitor the time evolution of various
reactivity parameters in order to gain insights into the associated
structure principles in a dynamical context, involving both
ground and excited states. Theoretical background of the present
work is presented in section II. A new kinetic energy functional
and a new Fukui function used for this purpose are described
in sections III and IV, respectively. Section V provides numeri-
cal details, and the results and discussions are given in section
VI. Finally, section VII contains some concluding remarks.

II. Theoretical Background

Hohenberg-Kohn-Sham density functional theory10 was
originally formulated for the ground state. It asserts that the
electron density (F(r )) contains all the information of a system.
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To tackle the dynamical situations, a time-dependent version
of DFT is provided22 which shows that the mapping between
the time-dependent external potential andF(r ,t) is uniquely
invertible, implying that all the properties of the system are
functionals ofF(r ,t) and current densityj (r ,t). Now a dynamical
process can be studied in case we have an equation to obtain
F(r ,t) and j (r ,t) at all times. An amalgamation of time-
dependent DFT22 and quantum fluid dynamics23 resulted in
quantum fluid density functional theory21 whose backbone is
the following generalized nonlinear Schro¨dinger equation

with

whereê is the velocity potential. In the present paper we solve
this equation to study the temporal evolution of various reactivity
parameters associated with a collision process between a proton
and a Be atom in its ground and excited electronic states. We
have chosen this system because in the presence of a third
partner to take away the excess energy, this collision may lead
to the formation of a stable closed shell molecule24 BeH+ with
D0 ) 3.14 Ev andRe ) 1.3122 Å. In eq 5a the effective
potentialVeff is given by

whereTNW andExc denote the non-Weizsa¨cker part of the kinetic
energy and exchange-correlation energy functionals, respec-
tively. The explicit form forTNW is given in the next section
and that ofExc has been taken as

whereEx is the Dirac exchange functional modified in the spirit
of Becke’s functional,25 as follows26

and Ec is a Wigner-type parametrized correlation energy
functional given by27

In eq 6R1,R2 andZ1,Z2 are radius vectors and atomic numbers
of the target (Be) and the projectile (H+) nuclei, respectively.
The origin of the coordinate system is fixed on the target
nucleus, and the position of the projectile is determined by a
Coulomb trajectory.28

Unique invertibility of the mappingsVext(r ,t) f F(r ,t) and
Vext(r ,t) f j (r ,t), Vext(r ,t) being the external potential, has been
established22 in time-dependent DFT. Therefore, any time-
dependent quantity is a unique functional ofF(r ,t) and j (r ,t).
For the present problem the time-dependent energy may be
written as

where the first term is the macroscopic kinetic energy and the
second term is the intrinsic kinetic energy whose explicit form
is given in the next section. Energy or any other time-dependent
quantity at any given time step can be calculated in caseF(r ,t)
and j (r ,t) are known at that time step. Quantum fluid density
functional theory helps obtaining them through the solution of
eq 5a,b.
Time evolution of electronegativity can be followed by

writing it as follows,17,20

The time-dependent chemical potential becomes equal to the
total electrostatic potential17,20 at a pointrµ, i.e.,

where rµ is the point in which the following condition is
satisfied at that time step,

It may be noted that att ) 0 eqs 9 and 10 transform to those
given by Politzer et al.29 to calculate the covalent radii of atoms
using the electronegativity equalization principle. Note the
misprints in eqs 6 and 8 of ref 17, in the potential term arising
out of the macroscopic kinetic energy which, however, was
calculated correctly.
Equations 3 and 4 have been used to study the hardness

dynamics. The required Hohenberg-Kohn-Sham universal
functionalF[F] to calculate the hardness kernel (eq 4) is taken
from eq 8 by removing the external potential dependent terms.
Section IV describes the Fukui functionf (r ) employed in the
present work to calculate the global hardness from eq 3. Note
that a clear-cut maximum was not obtained in the time-
dependent hardness profile in our earlier calculations17,20 in
which the homogeneous electron gas formula forf (r ) was
used.17,20

To monitor the time evolution of polarizability we calculate
it as follows

where Dind
z (t) is the electronic part of the induced dipole

moment andGz(t) is component of the external Coulomb field
along thezaxis. It has been legitimately assumed17,20,21,28that
the overall charge distribution is cylindrically symmetric about
an axis (-∞ e ze ∞) passing through the target nucleus, due
to the high projectile velocity.

E(t) ) 1
2∫F(r ,t)|∇ê(r ,t)|2 dr + T[F] +

1
2∫∫F(r ,t) F(r ′,t)

|r - r ′| dr + Exc[F] - Z1∫ F(r ,t)
|R1 - r | dr -

Z2∫ F(r ,t)
|R2 - r | dr (8)
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δE(t)

δF
)

-[12|∇ê|2 + ∂T
δF
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|r - r ′| dr ′ +

δExc[F]
δF ] +

Z1
|R1 - r | +

Z2
|R2 - r | (9)

-ø(t) ) µ(t) )∫ F(r ,t)
|rµ - r | dr -

Z1
|R1 - rµ|

-
Z2

|R2 - rµ|
(10)

1
2
(∇ê)2 + δT

δF
+

δExc[F]
δF

) 0 (11)

R(t) ) |Dind
z (t)|/|Gz(t)| (12)

[- 1
2
∇2 + Veff(r ,t)]Φ(r ,t) ) i

∂Φ(r ,t)
∂t

, i ) x-1 (5a)

Φ(r ,t) ) F1/2 exp(iê);
j ) [Φre∇Φim - Φim∇Φre] ) F∇ê (5b)

Veff(r ,t) ) (δTNW
δF ) + (δExc

δF ) +∫ F(r ′,t)
|r - r ′| dr ′ -

Z1
|R1(t) - r | -

Z2
|R2(t) - r | (6)

Exc[F] ) Ex[F] + Ec[F] (7a)

Ex[F] ) -Cx[∫F4/3 dr +∫ F4/3

1+ (r2F2/3/0.0244)
dr],

Cx ) ( 34π)(3π2)1/3 (7b)

Ec[F] ) -∫ F
9.81+ 21.437F-1/3 dr (7c)
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To study the entropy dynamics, an average density argu-
ment17,20,21is used for its definition. Considering anN-electron
system as a system ofN noninteracting particles moving under
the influence of an effective potential fieldVeff(r ,t), entropy is
defined as17,20,21

In eq 13k is the Boltzmann constant andθ(r ,t) is a space-
time-dependent temperature given as17,20,21

wherets(r ;F(r ,t)) is the kinetic energy density which integrates
to the total kinetic energy as prescribed in the next section.

III. A New Kinetic Energy Functional

Although the Hohenberg-Kohn theorem asserts the existence
of an energy functional, the exact forms for kinetic and
exchange-correlation energy functionals are still not known.30

Attempts have been made to construct approximate kinetic
energy functionals with good local and global behavior as well
as a proper functional derivative.30 Recently, Ghosh and
Deb26 have proposed a new local kinetic energy functional as
follows

whereT0[F] is the Thomas-Fermi functional given by

Considering the importance31,32of the Weizsa¨cker functional
TW[F] and a global correlation33 between a first gradient
correction34 and the above local correction,26 we propose the
following functional with proper global and local behavior and
the correct functional derivative,26

where

Total kinetic energy values for several atoms have been
calculated using near-Hartree-Fock atomic densities35 in eq 17.
Table 1 compares these values with other values obtained from
existing important kinetic energy functionals. If we consider
the importance31,32of TW[F] and both global and local behavior
as well as the behavior of the functional derivative26,30 of the
present functional, it (eq 17) serves as one of the best kinetic
energy functionals known to date. Note that the local behavior
may be further improved by adding a fraction of∇2F term such
that the global values are not disturbed.
To tackle a molecular situation we add17,20,21another term to

TPW[F] as

where

The molecular kinetic energy functional is designed in such a
way thattmol[F] goes to 0 whenR tends to infinity and diatomic
molecular kinetic energy values are reproduced at the equilib-
rium bond lengths.17,20,21

IV. A Local Model for the Fukui Function

The Fukui function9 f (r ) is one of the most important
chemical reactivity indices that brings the necessary simple
quantification in Fukui’s frontier orbital theory38 by character-
izing the most reactive site of a chemical species with that
having the largest value off (r ). It is defined as follows9

Because of the difficulties associated with the calculations of
the above derivatives there have been several attempts17,20,39,40

to expressf (r ) as a density functional such that it can be
calculated straightforward with only the electron density of the
species concerned as input. A completely satisfactory Fukui
density functional for practical atomic and molecular calcula-
tions is, however, still awaited. Recently, Fuentealba40 has
proposed a local model forf (r). In the present work we propose
a form for f (r ) in a somewhat similar manner using better
quality energy functionals. Ultimately thisf (r ) will be used in
the calculation of global hardness. To modelf (r ) we take the

TABLE 1: Calculated Kinetic Energy Values (au) for Atomic Systems

atom T0a T0 + T2a T0 + T2 + T4a T0 + Trb TGBc TGDd TPWe THFf

He 2.561 2.879 2.963 2.860 2.862 2.852 2.862 2.862
Li 6.673 7.467 7.662 7.426 7.566 7.416 7.568 7.433
Be 13.124 14.635 14.990 14.563 14.975 14.537 14.986 14.573
C(1D) 33.608 37.156 37.942 37.077 37.899 37.057 37.924 37.688
N 48.312 53.115 54.490 53.111 54.284 53.384 53.721 54.401
Ne 117.76 127.83 129.78 128.13 128.47 128.04 128.491 128.55
Mg 183.99 198.71 201.49 199.36 199.55 199.28 199.663 199.61
Ar 489.95 524.22 530.43 526.58 527.47 526.57 527.252 526.81
Kr 2591.18 2733.04 2757.10 2749.44 2749.3 2750.9 2748.823 2752.0
Xe 6857.74 7183.52 7237.25 7228.19 7235.3 7233.4 7235.147 7232.0

aReferences 34 and 36.bReference 34.cReference 37.dReference 26.ePresent work.f Hartree-Fock kinetic energy values from ref 35.

S(t) )∫{5/2 - ln F(r ,t) + 3/2ln(kθ(r ,t)/2π)}kF(r ,t) dr (13)

ts(r ;F(r ,t)) ) 3/2k θ(r ,t) F(r ,t) + (|j (r ,t)|22F(r ,t)) (14)

T[F] ) T0[F] + Cx∫ F4/3/r
1+ (rF1/3/0.043)

dr (15)

T0[F] ) Ck∫F(r )5/3 dr ; Ck ) 3/10(3π2)2/3 (16)

TPW[F] ) T0[F] + TW[F] -

a(N)λ∫ F4/3/r
1+ (rF1/3/0.043)

dr (17a)

TW[F] ) 1
8∫∇F‚∇F

F
dr (17b)

λ ) 30(3π)
1/3

(17c)

a(N) ) a0 + a1N
-1/3 + a2N

-2/3;
a0 ) 0.1279,a1 ) 0.1811,a2 ) -0.0819 (17d)

T[F] ) TPW[F] +∫tmol[F] dr (18a)

tmol[F] )∫(ψ(R,N)/N2) F(r ) F(r ′) dr ′ (18b)

ψ(R,N) ) 1

R12
- (N10)

14
R2 exp(-0.8R) (18c)

f (r ) ) (∂F(r)∂N )
V(r )

) ( δµ
δV(r ))N (19)
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following Hohenberg-Kohn-Sham universal functional, viz.,

whereT[F] and the total electron-electron repulsion energyVee-
[F] are taken, respectively, as in eq 15 and the following local
formula given by Parr,41

Equations 4 and 20 give the hardness kernelη(r ,r ′) which is
related to the local softness s(r ) within this local model as
follows,40

The Fukui function can now be easily obtained as the
normalizeds(r ), i.e.,

A local hardness can also be obtained by averaging overη-
(r ,r ′) as8,40

Figure 1 depicts the radial distribution off (r ) for a Be atom
calculated using eq 23 by employing a near-Hartree-Fock
atomic density.35 The presence of atomic shell structure is
discernible. It is important to note that the Fukui function is
positive everywhere.
Radial distributions of local hardness for several noble gas

atoms are presented in Figure 2. Near-Hartree-Fock atomic
densities35 and eq 24 are used for this purpose. Atomic shell
structure is very prominent in these plots. It complements our
previous observation20 that η(r ) plots resemble density plots
more than (-∇2F) plots42 to predict the hard-soft behavior of
an atom or a molecule. This behavior is in conformity with
the fact that the hard-hard interactions are charge-controlled.43

It has also been shown44 through ab initio molecular orbital
calculations that the harder nitrogen end in the linkage isomer
SCN- possesses maximum gross charge.

V. Numerical Solution

Due to the high projectile velocity we legitimately assume
the azimuthal symmetry of the whole scattering system. Since

the electron density varies rapidly near the nucleus and relatively
slowly elsewhere we transform the variables as follows

and

whereF̃ is one of the cylindrical polar coordinates (F̃,æ̃,z). An
analytical integration has been carried out over 0e æ̃ e 2π.
The generalized nonlinear Schro¨dinger eq 5a takes the following
form20,21 in transformed variables

A leapfrog-type finite difference scheme has been employed
to numerically solve eq 26. A detailed discussion on the
derivation of eq 26 and the numerical method for its solution
can be found elsewhere.20,21 The spatial and temporal grid sizes
are taken as

The position of the Be nucleus is chosen to be the origin of
the coordinate system. A proton with initial velocity 1 au is
approaching the Be nucleus from a distance of 10 au along a
Coulomb trajectory28 with an impact parameter 0.1 au and the
scattering angle 5.25°. The integration is carried out until the
proton recedes by a distance of 10 au from the target. To launch
the numerical solution we have taken the Be atom in1S and3P
electronic states.45 To our knowledge, the calculation of various
local and global reactivity parameters in a time-dependent
situation for a system in its excited state is done here for the
first time.

VI. Results and Discussions

Temporal evolution of the electronic chemical potential
(negative of electronegativity) is presented in Figure 3. Unless
otherwise specified, in all figures parts a and b refer to ground
and excited states of Be the atom, respectively. Time depen-
dence of different quantities such as induced dipole moment
and difference density helped21 dividing the whole collision
process into three distinct regions, viz., approach, encounter,
and departure. Time evolution ofµ also clearly marks these
divisions. In the encounter regime where the actual chemical
process takes place, eq 11 is not satisfied anywhere in the whole
space. But for the initial transients and strong nonlinear
fluctuations immediately before and after the encounter regime
µ attains a more or less steady value in the approach and
departure zones.

Figure 1. Radial distribution of the Fukui function for the Be atom.

Figure 2. Radial distribution of the local hardness for the noble gas
atoms.

y) F̃Φ (25a)

F̃ ) x2 (25b)

{( 34x3)∂y∂x- ( 14x2)∂2y∂x2 -
∂
2y

∂z2} - (1x4 - 2Veff)y) 2i
∂y

∂t
(26)

∆x) ∆z) 0.05 au and ∆t ) 0.025 au

F[F] ) T[F] + Vee[F] (20)

Vee[F] ) 0.7937(N- 1)2/3∫F(r )4/3 dr (21)

s(r ) )
δ(r-r ′)
2η(r ,r ′)

(22)

f (r ) )
s(r )

∫s(r ) dr (23)

η(r ) ) 1
N∫η(r ,r ′) F(r ′) dr ′ ) 1

2N
F(r )
s(r )

(24)
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Figures 4-6 depict the perspective plots of the Fukui function
calculated in three strategic points representative of three zones

Figure 5. Perspective plots of the Fukui function of the Be atom
colliding with a proton, att ) 10.275 au, in cylindrical polar coordinates
(F̃,z): (a) ground state, (b) excited state. See caption of Figure 4 for
details.

Figure 6. Perspective plots of the Fukui function of the Be atom
colliding with a proton, att ) 18.775 au, in cylindrical polar coordinates
(F̃,z): (a) ground state, (b) excited state. See caption of Figure 4 for
details.

Figure 3. Time evolution of chemical potential (µ) during a collision
process between a Be atom and a proton: (a) ground state, (b) excited
state.

Figure 4. Perspective plots of the Fukui function of the Be atom
colliding with a proton, att ) 0: (a) ground state, (b) excited state.
The basal rectangular mesh designates the (F̃,z) plane where 0e F̃ e
4 and-3 e z e 3. The nucleus of the atom is at (0,0).
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discussed above, viz., at the beginning of the approach regime,
at the middle of the encounter regime, and toward the end of
the departure regime, respectively. In Figure 4 we observe an
effectively atomicf(F̃,z) when the Be atom has not started to
experience the Coulomb field due to the incoming proton.
When the proton proceeds toward the target, the whole scattering
system starts behaving like a supermolecule and almost every-
where in spacef(F̃,z) becomes significant. Once the proton and
the Be atom reach their closest distance to the target, a decrease
in the value of the Fukui function begins at the origin, and it
becomes conspicuous when the proton moves an appreciable
distance away from the target. It may be noted thatf(F̃,z) is
everywhere positive and normalized to unity (eq 23). The
difference between these local plots for ground and excited states
becomes increasingly conspicuous as time progresses. It is
interesting to note that even when the proton goes to a large
distance in the departure regime the Fukui function does not
come back to its original shape. Presumably this occurs due to
nonlinear charge oscillations since the electron density is still
shared by both the nuclei. When the proton moves away it
leaves behind a pulsating Be atom and the electronic charge
gets continuously redistributed until it comes back completely
to Be atom, leaving the free proton.
The time-dependent hardness profile is given in Figure 7.

At t ) 0, the calculated global hardness value for the ground
state is 0.1898 au. Since the Be atom is yet to feel the presence
of the proton it is essentially theη value for the Be atom in its
ground state. Thisη compares very well with the corresponding
literature value49 0.1654 au. It is important to note that this
calculation ofη does not require any a priori knowledge of the
total or orbital energy values of the system as is the case with
most of the present day prescriptions5 for η calculations. For
this reason any attempt to numerically verify the maximum

hardness principle15 (MHP) had to directly resort to the
minimum energy criterion for stability. Not only are the
energies not necessary for the present method but we can even
bypass the solution of the Schro¨dinger equation in case we
generate the required electron density from some other source,
say from an experiment or as the solution of a single-density
equation.33,50 The initial (t ) 0) hardness value for the excited
state turns out to be 0.1875 au, which is smaller than theη(t )
0) value for the ground state, as expected from MHP.15 Since
these two values are comparable and no unrealisticη value is
obtained for the excited state, we gain some confidence in using
the ground-state functionals for the excited-state calculations
where almost nothing is known about the functional forms. The
global hardness for both the states remain more or less static in
the approach regime. In the encounter regime it suddenly
increases to a very high value and passes through a maximum.
It may be noted that in our earlier calculation17 a clear-cut
maximum inη profile was not observed due to the use of the
homogeneous electron gas formula forf (r ). In the present
calculation,the maximization of theη profile in a dynamical
situation clearly Vindicates theValidity of MHP15 for both
ground and excited states.The maximumη values for these
two states, respectively, are 0.906 516 24× 108 and 0.906 516 08
× 108 au which confirms once again the MHP via the supremum
η value for the ground state. After reaching the maximum value,
η starts decreasing rapidly to attain a stable value in the rest of
the encounter regime which is more or less the same as the
static value observed in the approach regime and in the
beginning of the encounter regime. The maximization ofη
points out that at least for a while a BeH+ molecule is formed
in the encounter regime, which eventually dissociates into Be
and H+ due to high kinetic energy of the proton. In the present
context we can envisage the chemical reaction dynamics to

Figure 7. Time evolution of hardness (η) during a collision process
between a Be atom and a proton: (a) ground state, (b) excited state

Figure 8. Time evolution of polarizability (R) during a collision process
between a Be atom and a proton: (a) ground state, (b) excited state.
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follow the reaction Be+ H+ f BeH+ in time for a very low
energy collision and/or a collision in the presence of another
partner to take away excess collisional energy.
Figures 8 and 9 respectively depict the time dependence of

polarizability and entropy associated with this collision process
for both ground and excited states. At the encounter regimeR
becomes minimum andS becomes maximum which provides
unmistakable signatures of the formation of BeH+, according
to the minimum polarizability principle17 and the maximum
entropy principle.19 The minimumR values and the maximum
Svalues for ground and excited states are 0.173 082 4× 10- 7,
0.173 082 4× 10- 7 au and 103.728 65, 103.728 64 au,
respectively, as expected.
The present work demonstrates that for both ground and

excited states a favorable dynamic process is characterized by
maximum hardness, minimum polarizability, and maximum
entropy values.

VII. Concluding Remarks

To understand the dynamical behavior of chemical reactivity
indices in ground and excited states a collision process between
a Be atom and a proton is studied within a quantum fluid density
functional framework. A new kinetic energy functional and a
new Fukui function are constructed for this purpose. The whole
collision process can be divided into three distinct regimes, viz.,
approach, encounter, and departure in terms of the time-
dependent electronegativity profile. In the encounter regime
where the actual chemical process takes place, hardness
maximizes, polarizability minimizes, and entropy maximizes.
These results support the validity of the dynamical variants of
the principles of electronegativity equalization, maximum hard-
ness, minimum polarizability, and maximum entropy for both
ground and excited states.
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